Allowed time: 3 hrs

Year: $1^{\text {st }}$ (Electrical Engineering) No. of Pages: (2)

Remarks: (assume any missing data, answers should be supported by sketches if possible)

Show how the polarity marking on the two magnetically coupled coils can be determined experimentally.
(4 Marks)
Using the stored energy calculation form to prove that the mutual inductance between two magnetically coupled coils cannot exceed the root of the product of the self inductances of the two coils.
(6 Marks)
Write a set of mesh-current equations that describe the following circuit in terms of $\boldsymbol{i}_{\boldsymbol{i}}, \boldsymbol{i}_{2}, \boldsymbol{i}_{\boldsymbol{3}}$.

(5 Marks)

Problem number (2)
 (30 Marks)

A three phase Δ-connected generator has an internal impedance of $0.012+j 0.12 \Omega /$ phase. When the load is removed from the generator, the magnitude of the terminal voltage is $14,300-\mathrm{V}$. the generator feeds a Δ-connected load through a transmission line with an impedance of $0.03+j 0.2$ $\Omega /$ phase. The per-phase impedance of the load is $7.5+j 4.5 \Omega$.
(i) Construct a single-phase equivalent circuit.
(ii) Calculate the magnitude of the line current.
(iii) Calculate the magnitude of the line voltage at the .terminals of the load.
(iv) Calculate the magnitude of the phase current in the load.
(v) Calculate the magnitude of the phase current in the source.

Prove that the operational amplifier can be used as an integrator and as a differentiator.
(4 Marks)
Explain the operation theory of the shown circuit. Calculate the output voltage for the given values. Show what is the required modification to double the output voltage for the same input voltages?
(8 Marks)

Problem number (3)

(40 Marks)
a)

Find the trigonometric Fourier series for the square wave shown in the figure. Calculate the average power in terms of " V " when this voltage is applied to a resistive load of 1Ω. Calculate up to the fifth harmonic only.
(12 Marks)
The switch in the circuit shown has been in position "a" for along time. At $t=0$, the switch is thrown to position b. calculate
(i) $\boldsymbol{i}, \boldsymbol{V}_{\boldsymbol{1}}$, and \boldsymbol{V}_{2} for $\mathrm{t} \geq 0^{+}$. Sketch the capacitor voltages versus time.
(ii) The energy stored in each capacitor at $\mathrm{t}=0$.
(iii) The energy trapped in the circuit and the total energy dissipated in the $30 \mathrm{k} \Omega$ resistor if the switch remains in position b indefinitely.

c) The switch in the circuit shown has been opened for a long time before closing it at $\mathrm{t}=0$. Find V_{0} for $\mathrm{t} \geq 0$.

Good Luck

Course Examination Committee
Dr. Ahmed Refaat Azmy
Dr. Said Mahmoud Allam
Dr. Fayza Safaan
Prof. Anwar Abd El-Latef
Course Coordinator: Prof. Essam Rashad

Tanta University

Department: Elec. Power and Machines Engineering Total Marks: 85 Marks

Course Title: Electrical Circuits 2
Date: June $13^{\text {th }} 2010$ (Second term)

Course Code: EPM1203
Allowed time: 3 hrs

Year: 1^{37} (Electrical Engineering)
No. of Pages: (2)

Remarks: (assume any missing data, answers should be supported by sketches if possible)

Problem number (1) (15 Marks)

a)
b)

Show how the polarity marking on the two magnetically coupled coils can be determined experimentally.
Using the stored energy calculation form to prove that the mutual inductance between two magnetically coupled coils can not exceed the root of the product of the self inductances of the two coils.
Write a set of mesh-current equations that describe the following circuit in terms of $\boldsymbol{i}_{\boldsymbol{l}}, \boldsymbol{i}_{\boldsymbol{2}}, \boldsymbol{i}_{\boldsymbol{3}}$

(5 Marks)

Problem number (2)

(30 Marks)
A three phase Δ-connected generator has an internal impedance of $0.012+j 0.12 \Omega /$ phase. When the load is removed from the generator, the magnitude of the terminal voltage is $14,300-\mathrm{V}$. the generator feeds a Δ-connected load through a transmission line with an impedance of $0.03+j 0.2$ $\Omega /$ phase. The per-phase impedance of the load is $7.5+j 4.5 \Omega$.
(i) Construct a single-phase equivalent circuit
(ii) Calculate the magnitude of the line current.
(iii) Calculate the magnitude of the line voltage at the terminals of the load
(iv) Calculate the magnitude of the phase current in the load.
(v) Calculate the magnitude of the phase current in the source.
(18 Marks)
Prove that the operational amplifier can be used as an integrator and as a differentiator.
(4 Marks)
Explain the operation theory of the shown circuit. Calculate the output voltage for the given values. Show what is the required modification to double the output voltage for the same input voltages?
(8 Marks)

Problem number (3)
(40 Marks)
a)
b)

Find the trigonometric Fourier series for the square wave shown in the figure Calculate the average power in terms of " V " when this voltage is applied to a resistive load of 1Ω. Calculate up to the fifth harmonic only.
(12 Marks)

The switch in the circuit shown has been in position "a" for along time. At $t=0$, the switch is thrown to position b. calculate
(i) i, V_{1}, and V_{2} for $\mathrm{t} \geq 0^{-}$. Sketch the capacitor voltages versus time.
(ii) The energy stored in each capacitor at $t=0$.
(iii) The energy trapped in the circuit and the total energy dissipated in the $30 \mathrm{k} \Omega$ resistor if the switch remains in position b indefinitely.

The switch in the circuit shown has been opened for a long time before closing it at $\mathrm{t}=0$. Find V_{0} for $t \geq 0$,
(16 Marks)

Good Luck

Course Examination Committee

Dr. Ahmed Refaat Azmy
Dr. Fayza Safaan
Dr. Said Mahmoud Allam

Course Coordinator: Prof. Essam Rashad

Course Code: PME1201
Year: First Year Electric
Allowed time: 3 Hours
No. of Pages: (2)
Date: 15/6/2010 (Final Second Term Exam)

Answer all the following questions:

Question 1

20 Marks
a- Expand the following function in Fourier series

$$
f(x)=|\cos x|, \quad-\pi<x<\pi
$$

b- Find the Fourier series of the function
$f(x)=x(\pi-x), \quad 0<\mathrm{x}<\frac{\pi}{2}$ such that $f(-x)=-f(x)$ and $f(x+\pi)=-f(x)$
Then find the sum of the series:
i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}}$
ii) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{6}}$
c- By using the exponential form of Fourier series prove that the expansion of the function
$f(x)=\cosh x, \quad-\pi<\mathrm{x}<\pi$ is given by $\sum_{-\infty}^{\infty} \frac{(-1)^{n} \sinh \pi}{\pi\left(1+n^{2}\right)} e^{\text {tn x }}$

Question 2

a- Solve the following O.D.E. using Laplace Transform

$$
y^{\prime \prime}(t)+9 y(t)=\cos 2 t, \quad y(0)=1 \text { and } y\left(\frac{\pi}{2}\right)=-1
$$

b- Solve the following system of O.D.E.s using Laplace Transform

$$
x^{\prime \prime}(t)+y^{\prime}(t)+3 x(t)=15 e^{-t} \quad \text { and } \quad y^{\prime \prime}(t)-4 x^{\prime}(t)+y(t)=15 \sin 2 t
$$

Subject to $x(0)=35, x^{\prime}(0)=-48, y(0)=27$ and $y^{\prime}(0)=-55$
c- Solve the following integro-differential equation using Laplace Transform

$$
y^{\prime}(t)+5 \int_{0}^{1} \cos 2(t-u) y(u) d u=10, \quad \text { given } y(\theta)=2
$$

a- \quad Obtain the P.D.E whose solution is $U(x, y)=F(2 x-3 i y)+G(y)$
b- Solve the following P.D.Es':
i) $U_{y y}=\frac{y \cdot \sinh (y)}{x+1}+\frac{1}{y}+2$
ii) $U_{x t}+U_{y y}=0$
iii) $U_{x x}=U_{t t}$, where $U(x, 0)=0, U_{1}(x, 0)=\frac{1}{1+x^{2}}$
iv) $U_{x x}=U_{t t}$, where $U(x, 0)=0, U_{1}(x, 0)=2 \sinh (4 \pi x)$

$$
U(0, t)=U(3, t)=0,0 \leq x \leq 3, t \geq 0
$$

Question 4

Solve the following system of O.D.Es: $\quad X^{\prime}=\left(\begin{array}{cc}2 & -1 \\ -2 & 1\end{array}\right) X+\binom{1}{0}$
b- Discuss the convergence of the following infinite series:
i) $\quad \sum_{2}^{\infty} \frac{1}{n \cdot[\ln (n)]^{1.1}}$
ii) $\sum_{1}^{\infty} \frac{5 n}{n^{3}+2}$
iii) $\sum_{1}^{\infty} \frac{5^{n} \cdot n!}{n^{n}}$

Course Title: Electrical Measurements
Year : $1^{\text {st }}$ Elect.
Exam : Final
Maximum Marks 90

Course Code : EPM1202
Allowed time: 3 hrs.
Date : 17/06/2010
No. of Pages: 3

Remarks: (answer the following questions... assume any missing data... answers should be supported by sketches...etc)

Question (1)

$$
(\mathrm{a}=6 \text { Marks, } \mathrm{b}=6 \text { Marks, } \mathrm{c}=6 \text { Marks })
$$

a) Aided with clear sketches whenever possible, define the following terms:
i. Substitution method
ii. Nominal value
iii. Precision
b) A 500 V voltmeter is specified to be accurate within $\pm 1 \%$ at full scale. Calculate the limiting error when it is used to measure a 150 V and 50 V .
c) Two different readings were obtained for a resistor. The tolerance for both readings are $\pm 0.2 \Omega$. Measurement 1 is 204.5Ω and measurement 2 is 204.8Ω.
Find a closer range for the true value of the resistor.

Question (2)

$$
(\mathrm{a}=6 \mathrm{Marks}, \mathrm{~b}=12 \mathrm{Marks})
$$

a) Write down the dynamic equation of a pointer measuring instrument. Give the definition of each term used and sketch the dynamic response.
b) A series type Ohmmeter has an internal resistance of 100Ω and a full-scale deflecting current of 1 mA . The battery output voltage is 6 V . The value of the resistance of half-scale deflection is 5000Ω. Calculate:
i) The value of the zero adjustment resistor R_{2} and limiting resistor R_{1}.
ii) Maximum value of the zero adjustment resistor R_{2} to compensate for a 10% drop in battery voltage.

Question (3) $\quad(\mathrm{a}=10 \mathrm{Marks}, \mathrm{b}=8 \mathrm{Marks})$
a) Choose the correct answer:
i. The moving coil of a wattmeter is the
(A) Current coil
(B) Power coil
(C) Voltage coil
(D) Resistance coil
ii. An accurate instrument:
(A) is precise
(B) is not precise
(C) is sensitive
(D) may be precise
iii. Piezo electric transducer converts:
(A) light to voltage
(B) heat to voltage
(C) stress to length
(D) pressure to voltage
iv. A high temperature sensitive resistance is:
(A) RTD
(B) Thermistors
(C) Thermocouple
(D) Strain gauge
v. CRO:
(A) Displays current wave-form
(B) measure rms values
(C) Displays voltage wave-form
(D) measure average values
b) A PMMCI having 25 mA full scale current with an internal resistance of 100Ω is used to construct an ac voltmeter with a voltage range of $200 \mathrm{~V}_{\text {rms }}$. Compute the value of the series-limiting resistor for a full-wave bridge rectifier with the forward resistance of each diode to be 100Ω and the reverse resistance to be infinite.

Question(4)

$$
(a=6 \text { Marks, } b=12 \text { Marks }
$$

a) Derive an expression for the gauge factor K of a circular wire strain gauge in terms of Poisson's ratio γ.
b) An ac bridge has the following arms:
$\mathrm{Z}_{1}=400 \Omega \angle-85^{\circ}$ in $\operatorname{arm} \mathrm{AB}, \mathrm{Z}_{2}=200 \Omega \angle 0^{\circ}$ in arm $\mathrm{AC}, \mathrm{Z}_{3}=300 \Omega \angle 0^{\circ}$ in arm BD, A null detector is connected between terminals B and C and an ac voltage source of 220 V and frequency 50 Hz is connected between terminals A and D.
Determine:
i. The unknown impedance Z_{4} in arm DC as a resistance and inductance in series.
ii. The quality factor of the unknown coil?

Question (5)

$$
(a=6 \mathrm{Marks}, b=12 \mathrm{Marks})
$$

a) From the points of view of connection diagrams, measuring ranges limitations and balance equation, compare between:
i. Maxwell and Hay bridges
ii. Wheatstone and Kelvin bridges

$$
=1
$$

b) The Graticule of a dual trace oscilloscope is shown in Fig. 1, with two sine waveforms A and B are displayed. The input signal of wave-form A is connected to the scope via a 10 X probe with vertical amplifier sensitivity of $2 \mathrm{~V} /$ division. The input signal of wave-form B is connected to the scope via a 1 X probe with vertical amplifier sensitivity of $10 \mathrm{~V} /$ division. The time-base sensitivity is $0.1 \mu \mathrm{~s} /$ division, determine:
i. Peak-to-peak voltage of the two wave-forms A and B.
ii. RMS of the two wave-forms A and B.
iii. Frequency of the two wave-forms A and B.
iv. Phase-shift between the two wave-forms Λ and B in degrees.
v. Lissajous pattern shown in Fig. 2 is obtained when signal B is disconnected, signal A connected to the input X , time-base is deactivated and a signal of unknown frequency is connected to the input Y with $\mathrm{X}-\mathrm{Y}$ mode is chosen. Determine unknown frequency.

Fig. 1 Two wave-forms A\&B

Fig. 2 Lissajous Pattern

Course Examination Committee:

Prof. M.A. El-Khazendar
Dr. M.E. Abdelaziz

Prof. S. Abdellatif
Dr. M.K. Elnemr

Course Code: EEC 1202
Allowed time: 3 hrs

Year: First Year No. of Pages: (2)

Remarks: (answer the following questions... assume any missing data... answers should be supported by sketches...etc)

Question number (1)

(15 Marks)

(a) The circuit shown in Fig. 1 is designed for maximum voltage gain while maintaining Q_{1} in the active mode. If $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$. and $\mathrm{V}_{\mathrm{BE}}=0.8 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$. Determine the required bias current.
(b) Determine the voltage gain and I/O impedance of the circuit shown in Fig.2 . Assume $\mathrm{V}_{\mathrm{A}}=\infty$.

Question number (2)
(15 Marks)
(a) Fig. 3 shows an emitter follower connected with common base . Assume $\mathrm{V}_{\mathrm{A}}=\infty$.
(i) Calculate I/O impedance of the circuit
(ii) Calculate the voltage gain of the circuit.
(b) In Fig. 4 ,If $\mathrm{W} / \mathrm{L}=10 / 0.18$ and $\lambda=0$. Determine the value of I_{D}.
$\left(\mathrm{V}_{\mathrm{TH}}=0.4 \mathrm{~V}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}\right)$

Question number (3) (20 Marks)

(a) The common gate circuit of Fig. 5 is designed to provide a voltage gain of 4 and an input impedance of 50Ω. If $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$ and $\lambda=0$, Determine the value of R_{D} and W / L.

$$
\left(\mathrm{V}_{\mathrm{TII}}=0.4 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}\right)
$$

(b) Assume in Fig.5, $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$ and $\lambda=0$, and $\mathrm{V}_{\mathrm{b}}=1 \mathrm{~V}$. Determine the value of R_{D} and W / L for an input impedance of 50Ω and maximum voltage gain (while M1 remains in saturation).

Question number (4) (20 Marks)

(a) (i) Explain the difference between SCR and a LASCR
(ii) Sketch the circuit diagram of SCR phase controller and explain its operation
(b) The SCR in Fig. 6 has a holding current of 100 mA , a maximum gate trigger voltage of 0.75 V , and a maximum gate trigger current of 10 mA .
(i) Calculate the maximum value of $\mathrm{V}_{\text {in }}$ that will cause the SCR to break down.
(ii) If $\mathrm{V}_{\text {in }}$ is zero, calculate the value to which V_{AA} must be reduced to turn the SCR off
(Assume when the SCR turns on, the anode voltage will drop to a low voltage of 2 V)
Question number (5)

(20 Marks)

(a) In the equivalent UJT circuit shown in Fig. $7, \mathrm{R}_{\mathrm{B} 1}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B} 2}=4 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BB}}=18 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{EE}}=5 \mathrm{~V}$.
(i) Is UJT forward biased
(ii) What value of $\mathrm{V}_{\text {ED }}$ will cause the UJT to conduct.
(b) Photons with an energy of 2 eV are incident on the photodiode shown in Fig. 8 . If the junction area is $0.5 \mathrm{~cm}^{2}$, the quantum efficiency is 0.8 , and the light intensity is 6.4×10^{-2} $\mathrm{W} / \mathrm{cm}^{2}$. (i) Determine the photocurrent
(ii) If $\mathrm{R}=1 \mathrm{k} \Omega$, determine the minimum power supply voltage V_{PS} needed to ensure that the diode is reverse biased. $\left(\mathrm{q}=1.6 \times 10^{-19} \mathrm{C},\right)$

Fig. 1

Fig. 4

Fig. 7

Fig. 5

Fig. 8

Fig. 6

Good Luck

Course Examination Committee

Prof. Mustafa M.Abd Elnaby
Dr. Heba Elkhoby
Course Coordinator: Prof. Mustafa Mahmoud Abd Elnaby

Tanta University

Department: Computers \& Automatic Control Engineering Total Marks: 70 Marks

Faculty of
Engineering

Course Title: Computer Hardware
Second term 2010

Course Code: CCE1205
Allowed time: 3 hrs

Year: $1^{\text {st }}$ Electrical Eng. No. of Pages: (2)

Remarks: Make your answers as neat as possible. Answer briefly and don't write un-needed information.

Q1. For each of the following statements, state whether it is True or False. Explain if False:
(30 points)

1. Instruction Register (IR) contains the address of the next instruction to be executed.
2. The value of NUM1 in the following assembly code (assuming one word per instruction) is 304

	ORIGIN 204
N	DATAWORD 100
NUM1	

3. The assembly instruction "INC $\mathbf{R 1}$ " is an example of immediate addressing.
4. A pop operation on the stack causes the Stack Pointer (SP) to be incremented.
5. Random Access Memory (RAM) means that access time is different for all memory locations (addresses).
6. USB interface allows unlimited number of devices to connect to the computer.
7. In USB, each data packet follows a token packet containing the address and endpoint of the device.
8. Cache memories are usually DRAM.
9. Cache replacement algorithms determine how to map a block in cache with another block of main memory.
10. A disk cylinder is the set of tracks that can be accessed without moving the disk arm.
11. Latency time is the time required to move the disk arm to the correct cylinder.
12. Internal fragmentation of a disk is loss of space within a sector or a cluster.
13. Number of cylinders is less than number of tracks in a disk surface.
14. A single file can be stored in more than one extent on the disk.
15. Transfer speed of USB2 is 200 Mbit per second.
16. Flash memory performance is bad on reading.
17. Page Table Base Register contains the number of virtual memory pages in memory.
18. A track is the smallest addressable unit in a disk.
19. In writing to a CD ROM disk, we cannot have two 1 's in a row.
20. Disk seek time is typically larger than latency time.
21. Sectors are organized along circular tracks on the surface of a CD ROM disk.
22. File manager uses a file allocation table (FAT) to map logical sectors of the file to the physical clusters.
23. Message of the USB host is copied only to the addressed device and the hub it the devices is connected to.
24. USB has 16 different packet types.
25. All devices connected to a USB hub must have the same speed.
26. The video adapter determines the display's maximum resolution.
27. Dots-per-inch (dpi) is a measure of display resolution.
28. A plotter is an input device.
29. Liquid Crystal Displays (LCD) are matrix addressable.
30. Input is any data or instructions entered into the computer's memory.

Q2.
a. If register R0 contains the binary value 11001101 and the carry bit C contains 0 , what will be the value stored in R0 and C after each of the following instructions:
i. ADD \#9, R0
ii. Rotate \#3, R0
iii. RotateLC \#3, R0
iv. AShiftR \#2, R0
b.

The figure shown is the memory organization for a list of n numbers stored in memory locations starting from location NUM1. It is required to compare them and store the maximum number in memory location MAX. Memory location N contains how many numbers to be compared (n numbers).
Write an assembly program to compare the n numbers using indirect addressing and store their maximum number in location MAX. Use RO as the temporary maximum number storage, R1 as the counter and R2 as the indirect addressing pointer.

Q3.
(18 points)
The figure shows internal organization of a $2 \mathrm{M} \times 8$ dynamic memory chip. Some signals are not shown in the diagram. Redraw the diagram. Then:
i. Add the following signals to the diagram: CAS, RAS, CS, RW, number of bits used for row address, and number of bits used for column address.
ii. Explain briefly the function of the $\overline{\mathrm{RAS}}$, CAS, CS, R/W signals.
iii. Explain briefly the function of the row address latch and the row decoder.
iv. How refreshing is implemented in SDRAM? Discuss the overhead caused by refreshing on memory performance.

GOOD LUCK

Course Examination Committee

Dr. Ahmed Eltahawy
Course Coordinator: Prof. Dr. Sayed Salam

Tanta University
Faculty of Engineering Computer and Aut. Control Eng. Dep. First Year

Second Term - Final Exam
Time allowed: 3 Hrs.
June 24, 2010
(Pages: 2 - Questions: 3 - Marks: 60)

Attempt the Following Questions:

Question 1;

$$
20^{\circ}=\left(16^{\circ}+4^{\circ}\right)
$$

1) Consider the class Employee that stores employee's first name and last name. This information is common to all employees including those in classes derived from class Employee. From class Employee derive classes HourlyWorker and PieceWorker. The HourlyWorker gets paid for any over time hour with rate equivalent to the rate of one hour and half. The overtime hours are the excess of 40 hours per week. The PieceWorker gets paid a fixed rate per item produced. For simplicity, assume this person makes N different items and the rate per item is R, then the class computes $N^{*} R$.
2) Consider the following:
class B \{ private:
int y, z;
public:
void set(int a , int b);
Write the definition for the method set that assigns the inputs a and b to B's data members.

Question 2:

$$
20^{\circ}=\left(16^{\circ}+4^{\circ}\right)
$$

1) Create a class called Complex for performing arithmetic with complex numbers and write a program to test your class.
Complex numbers have the form realpart + imaginarypart ${ }^{*} i$
Where i is $\sqrt{-1}$
Use floating-point variables to represent the private data of the class. Provide a constructor function that enables an object of that class to be initialized when it is declared. The constructor should contain default values in case of no initialization. Provide public member function for each of the following case:
a) Addition of two Complex numbers: the real parts are added together and the imaginary parts are added together.
b) Subtraction of two Complex numbers: the real part of the right operand is subtracted from the real part of the left operand and the right part of the imaginary operand is subtracted from the left part of the imaginary operand.

Tanta University Faculty of Engineering Computer and Aut. Control Eng. Dep. First Year

Computer Programming ($\mathrm{C}++$)
Second Term - Final Exam Time allowed: 3 Hrs .

- June 24, 2010
c) Printing Complex numbers in the form (a, b) where a is the real part and b is the imaginary part.

2) Explain the difference between the keywords struct and class.

Question 3:

$$
20^{\circ}=\left(16^{\circ}+4^{\circ}\right)
$$

1) Write a class Time with constructor and destructor. It can initialize its private members hour, minute, and second to 0 . The class Time includes the following methods:
a) setTime: to set the values of hour, minute, and second variables.
b) PrintMilitary: to print the time in military format.
c) PrintStandard: to print time in standard format.

The constructor of this class should ensure that the value supplied for hour is in the range 0 to 23 , and that the values for minute and second are each in the range 0 to 59 .

Note that:

- If the time is $10: 32.22$ morning, then the military time format is $(10: 32.22)$ and the standard time format is (10:32.22 am).
- If the time is 02:04.36 afternoon, then the military time format is (14:04.36) and the standard time format is ($02: 04.36 \mathrm{pm}$).

2) Find the error(s) in the following class and show how you can correct it.
class A \{
private:
int $\mathrm{x}=0$;
int $\mathrm{y}=0$;
public:
void double set(int, int);
)

Good Luck
Dr. Tarek EI.Ahmady El. Tobely

